CategoricalCrafter¶
The CategoricalCrafter converts categorical variables into numerical data.
Overview¶
from mlfcrafter import CategoricalCrafter
crafter = CategoricalCrafter(
encoder_type="minmax",
columns=None # Auto-select categorical columns
)
Parameters¶
encoder_type (str)¶
Default: "onehot"
Available Types:
- "onehot": One-Hot Encoding - Converts each categorical value into a new binary column (0 or 1) representing the presence of that category.
- "standard": Label Encoding - Assigns each unique categorical value an integer label, converting categories into numeric codes.
columns (Optional[List[str]])¶
Default: None (auto-select all categorical columns)
Specific columns to encode . If None, automatically selects all categoricals columns.
Context Input¶
data: Dataset to scale (required)target_column: Target column to exclude from scaling (optional)
Context Output¶
data: Dataset with encoded categorical featuresencoder: Fitted encoder object for future useencoded_columns: Names of columns that were encodedencoder_type: Type of encoder used
Example Usage¶
```python from mlfcrafter import MLFChain from mlfcrafter.crafters import *
Encode all categorical columns with One-Hot Encoding¶
pipeline = MLFChain() pipeline.add_crafter(DataIngestCrafter("data.csv")) pipeline.add_crafter(CategoricalCrafter(encoder_type="onehot")) pipeline.add_crafter(ModelCrafter()) result = pipeline.run()
Standard encoding for specific columns¶
pipeline = MLFChain() pipeline.add_crafter(DataIngestCrafter("data.csv")) pipeline.add_crafter(CategoricalCrafter( encoder_type="onehot", columns=["feature1", "feature2"] )) result = pipeline.run()