ScorerCrafter¶
The ScorerCrafter calculates performance metrics for trained models. It automatically handles both binary and multi-class classification scenarios.
Overview¶
from mlfcrafter import ScorerCrafter
crafter = ScorerCrafter(
metrics=["accuracy", "precision", "recall", "f1"]
)
Parameters¶
metrics (Optional[List[str]])¶
Default: ["accuracy", "precision", "recall", "f1"] (all metrics)
List of metrics to calculate:
- "accuracy": Overall accuracy (correct predictions / total predictions)
- "precision": Positive predictive value (TP / (TP + FP))
- "recall": Sensitivity or true positive rate (TP / (TP + FN))
- "f1": Harmonic mean of precision and recall
Context Input¶
y_test: True labels from test set (required)y_pred: Predicted labels from model (required)
Context Output¶
scores: Dictionary containing calculated metrics (keys: metric names, values: calculated scores)
Example Usage¶
from mlfcrafter import MLFChain
from mlfcrafter.crafters import *
# Calculate all metrics
pipeline = MLFChain()
pipeline.add_crafter(DataIngestCrafter("data.csv"))
pipeline.add_crafter(ModelCrafter())
pipeline.add_crafter(ScorerCrafter())
result = pipeline.run()
# Calculate specific metrics only
pipeline = MLFChain()
pipeline.add_crafter(DataIngestCrafter("data.csv"))
pipeline.add_crafter(ModelCrafter())
pipeline.add_crafter(ScorerCrafter(metrics=["accuracy", "f1"]))
result = pipeline.run()
# Just accuracy
pipeline = MLFChain()
pipeline.add_crafter(DataIngestCrafter("data.csv"))
pipeline.add_crafter(ModelCrafter())
pipeline.add_crafter(ScorerCrafter(metrics=["accuracy"]))
result = pipeline.run()